Experiments on Lecturer Segmentation using Texture Classification and a 3D Camerapdfauthor
نویسندگان
چکیده
In our system for recording and transmitting lectures over the Internet the board content is sent as vector graphics, yielding a high quality image, while the video of the lecturer is sent as a separate stream. It is easy for the viewer to read the board, but the lecturer appears in a separate window. To eliminate this problem, we segment the lecturer from the video stream and paste his image on the board image at video stream rates. The lecturer can be dimmed by the remote viewer from opaque to semitransparent, or even transparent. This paper explains the two techniques we apply to achieve this: texture classification based segmentation, and segmentation using a novel 3D camera based on the time-of-flight of backscattered light principle. We argue that this technique provides a solution to the divided attention problem which arises when board and lecturer are transmitted in two different streams.
منابع مشابه
Classification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet
Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملA hybrid color texture image classification method based on 2D and semi 3D texture features and extreme learning machine
Color texture classification is an important step in image segmentation and recognition. The color information is especially important in textures of natural scenes. In this paper, we propose a novel approach based on the 2D and semi 3D texture feature coding method (TFCM) for color texture classification. While 2D TFCM features are extracted on gray scale converted color texture images, the se...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005